

| Daily Tutorial Sheet 2 | Level – 1 |
|------------------------|-----------|
|------------------------|-----------|

- **16.(D)** Smelting is not a method of concentration. It involves extraction of metal in fused state. During smelting, the ore is heated with suitable reducing agent in order to obtain metal.
- 17.(D) Refer chapter metallurgy
- **18.(B)** Gravity separation is used where the relative densities of ore and gangue are different. Ores like Tinstone  $(SnO_2)$ , Haematite  $(Fe_2O_3)$ , chromite  $(FeO \cdot Cr_2O_3)$  etc. are concentrated by this method.
- 19.(A) Froth-floatation method involve adsorption of the surfactant (sodium ethyl xanthate) over a film of oil.
- **20.(D)** Froth-floatation method is useful for sulphide ores which are not soluble water. Hence it is useful for sulphide ores of copper.
- **21.(A)**  $Fe_2O_3$  (oxide ore) is concentrated by gravity separation method.
- **22.(C)**  $SnO_2$  (cassiterite) is separated from  $Fe_2O_3$  by the electromagnetic separation.
- **23.(B)** Smelting is NOT a concentration method.
- **24.(B)** Bauxite is concentrated by chemical leaching.
- 25.(D) Sulphide ores are insoluble in water; shows affinity towards non-polar medium like oil.
- **26.(C)** Fact
- **27.(C)** Cerussite (PbCO<sub>3</sub>) is concentrated by gravity separation method.
- **28.(C)**  $2Cu_2O + Cu_2S \xrightarrow{\Delta} 6Cu + SO_2(g) \uparrow$
- 29.(A) All are correct reduction process carbon can reduces most of the oxides.
- **30.(B)**  $CuS + O_2 \longrightarrow CuO + SO_2$ ;  $CuS + CuO \longrightarrow Cu + SO_2$